Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(15): 17655-17666, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645364

RESUMO

The nephrotoxic mycotoxin ochratoxin A (OTA) is a common food contaminant. OTA binds to the Sudlow's Site I region of serum albumin with very high affinity, resulting in its slow elimination. The displacement of OTA from albumin may be beneficial due to the faster excretion of the mycotoxin, while it may also lead to the increased tissue uptake of OTA. Furthermore, it is challenging to displace the mycotoxin from albumin even with high-affinity Site I ligands. In this study, we tested the impacts of Site I and Heme site ligands on OTA-albumin interactions by applying fluorescence spectroscopic, ultracentrifugation, and modeling studies. Chrysin-7-sulfate (C7S) strongly displaced OTA from both human and rat albumins; therefore, the impacts of C7S (single intravenous administration) and the parent flavonoid chrysin (repeated peroral treatment) were examined on the plasma and kidney levels of OTA in rats. Chrysin barely influenced the concentrations of mycotoxin in plasma and kidneys. In the first few hours, C7S significantly decreased the plasma levels of OTA compared to the control animals; while after 24 h, only minor differences were noticed. Our study highlights the superior displacing ability of C7S vs OTA regarding human and rat albumins.

2.
Eur J Pharm Sci ; 196: 106740, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437885

RESUMO

Organic anion transporting polypeptides (OATPs), OATP1B1 and OATP2B1 are membrane proteins mediating the cellular uptake of chemically diverse organic compounds. OATP1B1 is exclusively expressed in hepatocytes and plays a key role in hepatic detoxification. The ubiquitously expressed OATP2B1 promotes the intestinal absorption of orally administered drugs. Flavonoids are widely found in foods and beverages, and many of them can inhibit OATP function, resulting in food-drug interactions. In our previous work, we have shown that not only luteolin (LUT) and quercetin (Q), but also some of their metabolites can inhibit OATP1B1 and OATP2B1 activity. However, data about the potential direct transport of these flavonoids by OATPs have been incomplete. Hence, in the current study, we developed a simple, fluorescence-based method for the measurement of intracellular flavonoid levels. The method applies a cell-permeable small molecule (2-aminoethyl diphenylborinate, 2-APB), that, upon forming a complex with flavonoids, results in their fluorescence enhancement. This way the direct uptake of LUT and Q, and also their metabolites' could be investigated both by confocal microscopy and in a fluorescence plate reader in living cells. With this approach we identified quercetin-3'-O-sulfate, luteolin-3'-O-glucuronide, luteolin-7-O-glucuronide and luteolin-3'-O-sulfate as substrates of both OATP1B1 and OATP2B1. Our results highlight that OATP1B1 and OATP2B1 can be key participants in the transmembrane movement of LUT and Q conjugates with otherwise low cell permeability. In addition, the novel method developed in this study can be a good completion to existing fluorescence-based assays to investigate OATP function.

3.
Toxicol In Vitro ; 96: 105789, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341109

RESUMO

Zearalenone (ZEN) is a mycoestrogen produced by Fusarium fungi. ZEN is a frequent contaminant in cereal-based products, representing significant health threat. The major reduced metabolites of ZEN are α-zearalenol (α-ZEL) and ß-zearalenol (ß-ZEL). Since the toxicokinetic interactions of ZEN/ZELs with cytochrome P450 enzymes (CYPs) and organic anion transporting polypeptides (OATPs) have been barely characterized, we examined these interactions applying in vitro models. ZEN and ZELs were relatively strong inhibitors of CYP3A4 and moderate inhibitors of CYP1A2 and CYP2C9. Both CYP1A2 and CYP3A4 decreased ZEN and ß-ZEL concentrations in depletion assays, while only CYP1A2 reduced α-ZEL levels. OATPs tested were strongly or moderately inhibited by ZEN and ZELs; however, these mycotoxins did not show higher cytotoxicity in OATP-overexpressing cells. Our results help the deeper understanding of the toxicokinetic/pharmacokinetic interactions of ZEN, α-ZEL, and ß-ZEL.


Assuntos
Micotoxinas , Transportadores de Ânions Orgânicos , Zearalenona , Zeranol/análogos & derivados , Zearalenona/toxicidade , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Peptídeos
4.
Biomed Pharmacother ; 168: 115761, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865989

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) pandemic strongly stimulated the development of small molecule antivirals selectively targeting type II transmembrane serine proteases (TTSP), required for the host-cell entry of numerous viruses. A set of 3-amidinophenylalanine derivatives (MI-21, MI-472, MI-477, MI-485, MI-1903 and MI-1904), which inhibit the cleavage of certain viral glycoproteins was characterized in 2D and 3D primary human hepatocyte models on collagen- and Matrigel-coating using a CCK-8 assay to evaluate their cytotoxicity, a resorufin-based method to detect redox imbalances, fluorescence and ultrafiltration experiments to evaluate their interactions with human serum albumin (HSA) and α-acidic glycoprotein (AGP), and luminescence measurement to assess CYP3A4 modulation. For elucidation of selectivity of the applied compounds towards matriptase, transmembrane serine protease 2 (TMPRRS2), thrombin and factor Xa (FXa) Ki values were determined. It was proven that cell viability was only deteriorated by inhibitor MI-1903, and redox status was not influenced by administration of the selected inhibitors at 50 µM for 24 h. MI-472 and MI-477 formed relatively stable complexes with AGP. CYP3A4 inhibition was found to be strong in PHHs exposed to all inhibitors with the exception of MI-21, which seems to be a promising drug candidate also due to its better selectivity towards matriptase and TMPRSS2 over the blood clotting proteases thrombin and FXa. Our in vitro pharmacokinetic screening with these inhibitors helps to select the compounds with the best selectivity and safety profile suitable for a further preclinical characterization without animal sacrifice.


Assuntos
Antivirais , Citocromo P-450 CYP3A , Serina Endopeptidases , Inibidores de Serino Proteinase , Trombina , Animais , Humanos , Antivirais/farmacologia , Serina Endopeptidases/metabolismo , Inibidores de Serino Proteinase/farmacologia
5.
Biomed Pharmacother ; 167: 115548, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734263

RESUMO

Luteolin, naringenin, myricetin, and ampelopsin are abundant flavonoids in nature, and several dietary supplements also contain them at very high doses. After the peroral intake, flavonoids go through extensive presystemic biotransformation; therefore, typically their sulfate/glucuronic acid conjugates reach high concentrations in the circulation. Xanthine oxidase (XO) enzyme is involved in uric acid production, and it also takes part in the elimination of certain drugs (e.g., 6-mercaptopurine). The inhibitory effects of flavonoid aglycones on XO have been widely studied; however, only limited data are available regarding their sulfate and glucuronic acid conjugates. In this study, we examined the impacts of luteolin, naringenin, myricetin, ampelopsin, and their sulfate/glucuronide derivatives on XO-catalyzed xanthine and 6-mercaptopurine oxidations employing in vitro enzyme incubation assays and molecular modeling studies. Our major results/conclusions are the following: (1) Sulfate metabolites were stronger while glucuronic acid derivatives were weaker inhibitors of XO compared to the parent flavonoids. (2) Naringenin, ampelopsin, and their metabolites were weak inhibitors of the enzyme. (3) Luteolin, myricetin, and their sulfates were highly potent inhibitors of XO, and the glucuronides of luteolin showed moderate inhibitory impacts. (4) Conjugated metabolites of luteolin and myricetin can be involved in the inhibitory effects of these flavonoids on XO enzyme.

6.
Org Biomol Chem ; 21(29): 6018-6027, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436113

RESUMO

Aza-BODIPY dyes have recently come to attention owing to their excellent chemical and photophysical properties. In particular, their absorption and emission maxima can efficiently be shifted to the red or even to the NIR spectral region. On this basis, aza-BODIPY derivatives are widely investigated as fluorescent probes or phototherapeutic agents. Here we report the synthesis of a set of novel aza-BODIPY derivatives as potential photosensitizers for use in photodynamic therapy. Triazolyl derivatives were obtained via Cu(I)-catalyzed azide-alkyne cycloaddition as the key step. In vitro photodynamic activities of the newly synthesized compounds were evaluated on the A431 human epidermoid carcinoma cell line. Structural differences influenced the light-induced toxicity of the test compounds markedly. Compared to the initial tetraphenyl aza-BODIPY derivative, the compound bearing two hydrophilic triethylene glycol side chains showed substantial, more than 250-fold, photodynamic activity with no dark toxicity. Our newly synthesized aza-BODIPY derivative, acting in the nanomolar range, might serve as a promising candidate for the design of more active and selective photosensitizers.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Compostos de Boro/química , Linhagem Celular
7.
Biomolecules ; 13(5)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37238625

RESUMO

Fumonisins are frequent food contaminants. The high exposure to fumonisins can cause harmful effects in humans and animals. Fumonisin B1 (FB1) is the most typical member of this group; however, the occurrence of several other derivatives has been reported. Acylated metabolites of FB1 have also been described as possible food contaminants, and the very limited data available suggest their significantly higher toxicity compared to FB1. Furthermore, the physicochemical and toxicokinetic properties (e.g., albumin binding) of acyl-FB1 derivatives may show large differences compared to the parent mycotoxin. Therefore, we tested the interactions of FB1, N-palmitoyl-FB1 (N-pal-FB1), 5-O-palmitoyl-FB1 (5-O-pal-FB1), and fumonisin B4 (FB4) with human serum albumin as well as the toxic effects of these mycotoxins on zebrafish embryos were examined. Based on our results, the most important observations and conclusions are the following: (1) FB1 and FB4 bind to albumin with low affinity, while palmitoyl-FB1 derivatives form highly stable complexes with the protein. (2) N-pal-FB1 and 5-O-pal-FB1 likely occupy more high-affinity binding sites on albumin. (3) Among the mycotoxins tested, N-pal-FB1 showed the most toxic effects on zebrafish, followed by 5-O-pal-FB1, FB4, and FB1. (4) Our study provides the first in vivo toxicity data regarding N-pal-FB1, 5-O-pal-FB1, and FB4.


Assuntos
Fumonisinas , Micotoxinas , Animais , Humanos , Fumonisinas/toxicidade , Fumonisinas/metabolismo , Micotoxinas/toxicidade , Peixe-Zebra/metabolismo , Albumina Sérica Humana
8.
Toxins (Basel) ; 15(4)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37104188

RESUMO

Mycotoxins are frequent toxic contaminants in foods and beverages, causing a significant health threat. Interactions of mycotoxins with biotransformation enzymes (e.g., cytochrome P450 enzymes, sulfotransferases, and uridine 5'-diphospho-glucuronosyltransferases) may be important due to their possible detoxification or toxic activation during enzymatic processes. Furthermore, mycotoxin-induced enzyme inhibition may affect the biotransformation of other molecules. A recent study described the strong inhibitory effects of alternariol and alternariol-9-methylether on the xanthine oxidase (XO) enzyme. Therefore, we aimed to test the impacts of 31 mycotoxins (including the masked/modified derivatives of alternariol and alternariol-9-methylether) on XO-catalyzed uric acid formation. Besides the in vitro enzyme incubation assays, mycotoxin depletion experiments and modeling studies were performed. Among the mycotoxins tested, alternariol, alternariol-3-sulfate, and α-zearalenol showed moderate inhibitory actions on the enzyme, representing more than tenfold weaker impacts compared with the positive control inhibitor allopurinol. In mycotoxin depletion assays, XO did not affect the concentrations of alternariol, alternariol-3-sulfate, and α-zearalenol in the incubates; thus, these compounds are inhibitors but not substrates of the enzyme. Experimental data and modeling studies suggest the reversible, allosteric inhibition of XO by these three mycotoxins. Our results help the better understanding of the toxicokinetic interactions of mycotoxins.


Assuntos
Micotoxinas , Micotoxinas/metabolismo , Xantina Oxidase , Sulfatos , Inibidores Enzimáticos/farmacologia
9.
Metabolites ; 13(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36984886

RESUMO

Mycotoxins are toxic metabolites of molds. Chronic exposure to alternariol, zearalenone, and their metabolites may cause the development of endocrine-disrupting and carcinogenic effects. Alternariol-3-glucoside (AG) and alternariol-9-monomethylether-3-glucoside (AMG) are masked derivatives of alternariol. Furthermore, in mammals, zearalenone-14-glucuronide (Z14Glr) is one of the most dominant metabolites of zearalenone. In this study, we examined serum albumins and cyclodextrins (CDs) as potential binders of AG, AMG, and Z14Glr. The most important results/conclusions were as follows: AG and AMG formed moderately strong complexes with human, bovine, porcine, and rat albumins. Rat albumin bound Z14Glr approximately 4.5-fold stronger than human albumin. AG-albumin and Z14Glr-albumin interactions were barely influenced by the environmental pH, while the formation of AMG-albumin complexes was strongly favored by alkaline conditions. Among the mycotoxin-CD complexes examined, AMG-sugammadex interaction proved to be the most stable. CD bead polymers decreased the mycotoxin content of aqueous solutions, with moderate removal of AG and AMG, while weak extraction of Z14Glr was observed. In conclusion, rat albumin is a relatively strong binder of Z14Glr, and albumin can form highly stable complexes with AMG at pH 8.5. Therefore, albumins can be considered as affinity proteins with regard to the latter mycotoxin metabolites.

10.
Biomed Pharmacother ; 157: 114078, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481402

RESUMO

Luteolin and naringenin are flavonoids found in various foods/beverages and present in certain dietary supplements. After a high intake of these flavonoids, their sulfate and glucuronide conjugates reach micromolar concentrations in the bloodstream. Some pharmacokinetic interactions of luteolin and naringenin have been investigated in previous studies; however, only limited data are available in regard to their metabolites. In this study, we aimed to investigate the interactions of the sulfate and glucuronic acid conjugates of luteolin and naringenin with human serum albumin, cytochrome P450 (CYP2C9, 2C19, and 3A4) enzymes, and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Our main findings are as follows: (1) Sulfate conjugates formed more stable complexes with albumin than the parent flavonoids. (2) Luteolin and naringenin conjugates showed no or only weak inhibitory action on the CYP enzymes examined. (3) Certain conjugates of luteolin and naringenin are potent inhibitors of OATP1B1 and/or OATP2B1 enzymes. (4) Conjugated metabolites of luteolin and naringenin may play an important role in the pharmacokinetic interactions of these flavonoids.


Assuntos
Citocromo P-450 CYP3A , Transportadores de Ânions Orgânicos , Humanos , Citocromo P-450 CYP3A/metabolismo , Glucuronídeos , Luteolina/farmacologia , Albumina Sérica Humana/metabolismo , Sulfatos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flavonoides/farmacologia , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2C19/metabolismo
11.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430492

RESUMO

Human serum albumin (HSA) is the most abundant plasma protein in circulation. The three most important drug-binding sites on HSA are Sudlow's Site I (subdomain IIA), Sudlow's Site II (subdomain IIIA), and Heme site (subdomain IB). Heme site and Site I are allosterically coupled; therefore, their ligands may be able to allosterically modulate the binding affinity of each other. In this study, the effects of four Heme site ligands (bilirubin, biliverdin, hemin, and methyl orange) on the interaction of the Site I ligand warfarin with HSA were tested, employing fluorescence spectroscopic, ultrafiltration, and ultracentrifugation studies. Our major results/conclusions are the following. (1) Quenching studies indicated no relevant interaction, while the other fluorescent model used suggested that each Heme site ligand strongly decreases the albumin binding of warfarin. (2) Ultrafiltration and ultracentrifugation studies demonstrated the complex modulation of warfarin-HSA interaction by the different Heme site markers; for example, bilirubin strongly decreased while methyl orange considerably increased the bound fraction of warfarin. (3) Fluorescence spectroscopic studies showed misleading results in these diligand-albumin interactions. (4) Different Heme site ligands can increase or decrease the albumin binding of warfarin and the outcome can even be concentration dependent (e.g., biliverdin and hemin).


Assuntos
Biliverdina , Varfarina , Humanos , Varfarina/farmacologia , Heme/metabolismo , Hemina , Bilirrubina , Ligantes , Albumina Sérica/metabolismo
12.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430830

RESUMO

Alternaria mycotoxins, including alternariol (AOH), alternariol-9-monomethylether (AME), and their masked/modified derivatives (e.g., sulfates or glycosides), are common food contaminants. Their acute toxicity is relatively low, while chronic exposure can lead to the development of adverse health effects. Masked/modified metabolites can probably release the more toxic parent mycotoxin due to their enzymatic hydrolysis in the intestines. Previously, we demonstrated the complex formation of AOH with serum albumins and cyclodextrins; these interactions were successfully applied for the extraction of AOH from aqueous matrices (including beverages). Therefore, in this study, the interactions of AME, alternariol-3-sulfate (AS), and alternariol-9-monomethylether-3-sulfate (AMS) were investigated with albumins (human, bovine, porcine, and rat) and with cyclodextrins (sulfobutylether-ß-cyclodextrin, sugammadex, and cyclodextrin bead polymers). Our major results/conclusions are the following: (1) The stability of mycotoxin-albumin complexes showed only minor species dependent variations. (2) AS and AMS formed highly stable complexes with albumins in a wide pH range, while AME-albumin interactions preferred alkaline conditions. (3) AME formed more stable complexes with the cyclodextrins examined than AS and AMS. (4) Beta-cyclodextrin bead polymer proved to be highly suitable for the extraction of AME, AS, and AMS from aqueous solution. (5) Albumins and cyclodextrins are promising binders of the mycotoxins tested.


Assuntos
Ciclodextrinas , Micotoxinas , Animais , Bovinos , Humanos , Ratos , Ciclodextrinas/química , Micotoxinas/química , Albumina Sérica , Sulfatos , Suínos
13.
Toxins (Basel) ; 14(9)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36136572

RESUMO

Mycotoxins are bioaccumulative contaminants impacting animals and humans. The simultaneous detection of frequent active exposures and accumulated mycotoxin level (s) in exposed organisms would be the most ideal to enable appropriate actions. However, few methods are available for the purpose, and there is a demand for dedicated, sensitive, reliable, and practical assays. To demonstrate the issue, mice were exposed to a relevant agent Ochratoxin A (OTA), and accumulated OTA was measured by fine-tuned commercial assays. Quantitative high-performance liquid chromatography with fluorescence detection, enzyme-linked immunosorbent assay, and flow cytometry assays have been developed/modified using reagents available as commercial products when appropriate. Assays were performed on excised samples, and results were compared. Accumulated OTA could be detected and quantified; positive correlations (between applied doses of exposure and accumulated OTA levels and the results from assays) were found. Dedicated assays could be developed, which provided comparable results. The presence and accumulation of OTA following even a short exposure could be quantitatively detected. The assays performed similarly, but HPLC had the greatest sensitivity. Blood contained higher levels of OTA than liver and kidney. We demonstrate that specific but flexible and practical assays should be used for specific/local purposes, to measure the exposure itself and accumulation in blood or organs.


Assuntos
Líquidos Corporais , Micotoxinas , Ocratoxinas , Animais , Líquidos Corporais/química , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos/análise , Humanos , Camundongos , Micotoxinas/análise , Ocratoxinas/análise
14.
Pharmaceutics ; 14(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36145637

RESUMO

Chlorpromazine (CPZ) is an antipsychotic drug which can cause several adverse effects and drug poisoning. Recent studies demonstrated that CPZ forms highly stable complexes with certain cyclodextrins (CDs) such as sulfobutylether-ß-CD (SBECD) and sugammadex (SGD). Since there is no available antidote in CPZ intoxication, and considering the good tolerability of these CDs even if when administered parenterally, we aimed to investigate the protective effects of SBECD and SGD against CPZ-induced acute toxicity employing in vitro (SH-SY5Y neuroblastoma cells) and in vivo (zebrafish embryo) models. Our major findings and conclusions are the following: (1) both SBECD and SGD strongly relieved the cytotoxic effects of CPZ in SH-SY5Y cells. (2) SGD co-treatment did not affect or increase the CPZ-induced 24 h mortality in NMRI mice, while SBECD caused a protective effect in a dose-dependent fashion. (3) The binding constants of ligand-CD complexes and/or the in vitro protective effects of CDs can help to estimate the in vivo suitability of CDs as antidotes; however, some other factors can overwrite these predictions.

15.
Environ Toxicol Pharmacol ; 95: 103965, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36031178

RESUMO

Alternariol (AOH) is a mycotoxin produced by Alternaria fungi, it appears as a contaminant in tomatoes, grains, and grapes. The chronic exposure to AOH may cause carcinogenic and xenoestrogenic effects. Cyclodextrins (CDs) are cyclic oligosaccharides, they form host-guest complexes with apolar molecules. In this study, the interactions of AOH with CD monomers and polymers were examined employing fluorescence spectroscopy. Thereafter, the protective effects of certain CDs vs. AOH-induced toxicity were investigated on HeLa cells and on zebrafish embryos. Our major observations are the following: (1) Sugammadex forms highly stable complex with AOH (K = 4.8 ×104 L/mol). (2) Sugammadex abolished the AOH-induced toxicity in HeLa cells, while native ß-CD did not show relevant protective effect. (3) Each CD tested decreased the AOH-induced mortality and sublethal adverse effects in zebrafish embryos: Interestingly, native ß-CD showed the strongest protective impact in this model. (4) CD technology may be suitable to relieve AOH-induced toxicity.


Assuntos
Ciclodextrinas , Micotoxinas , Animais , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Células HeLa , Humanos , Lactonas , Micotoxinas/toxicidade , Polímeros/química , Sugammadex , Peixe-Zebra
16.
Biomolecules ; 12(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36009000

RESUMO

Beauvericin (BEA), cyclopiazonic acid (CPA), and sterigmatocystin (STC) are emerging mycotoxins. They appear as contaminants in food and animal feed, leading to economic losses and health risks. Human serum albumin (HSA) forms stable complexes with certain mycotoxins, including ochratoxins, alternariol, citrinin, and zearalenone. HSA binding can influence the toxicokinetics of xenobiotics, and albumin can also be considered and applied as a relatively cheap affinity protein. Therefore, we examined the potential interactions of BEA, CPA, and STC with HSA employing fluorescence spectroscopy, ultracentrifugation, ultrafiltration, and molecular modeling. Spectroscopic and ultracentrifugation studies demonstrated the formation of low-affinity BEA-HSA (Ka ≈ 103 L/mol) and moderately strong CPA-HSA and STC-HSA complexes (Ka ≈ 104 L/mol). In ultrafiltration experiments, CPA slightly displaced each site marker (warfarin, naproxen, and camptothecin) tested, while BEA and STC did not affect significantly the albumin binding of these drugs. Modeling studies suggest that CPA occupies Sudlow's site I, while STC binds to the Heme site (FA1) on HSA. Considering the interactions of CPA with the site markers, the CPA-HSA interaction may have toxicological importance.


Assuntos
Albumina Sérica Humana , Esterigmatocistina , Animais , Sítios de Ligação , Depsipeptídeos , Humanos , Indóis , Ligação Proteica , Albumina Sérica/química , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Esterigmatocistina/metabolismo , Termodinâmica
17.
Biomed Pharmacother ; 151: 113124, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35594709

RESUMO

The substrate-analog furin inhibitor MI-1851 can suppress the cleavage of SARS-CoV-2 spike protein and consequently produces significant antiviral effect on infected human airway epithelial cells. In this study, the interaction of inhibitor MI-1851 was examined with human serum albumin using fluorescence spectroscopy and ultrafiltration techniques. Furthermore, the impacts of MI-1851 on human microsomal hepatic cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6 and 3A4 activities were assessed based on fluorometric assays. The inhibitory action was also examined on human recombinant CYP3A4 enzyme and on hepatocytes. In addition, microsomal stability (60 min) and cytotoxicity were tested as well. MI-1851 showed no relevant interaction with human serum albumin and was significantly depleted by human microsomes. Furthermore, it did not inhibit CYP1A2, 2C9, 2C19 and 2D6 enzymes. In human hepatocytes, CYP3A4 was significantly suppressed by MI-1851 and weak inhibition was noticed in regard to human microsomes and human recombinant CYP3A4. Finally, MI-1851 did not impair the viability and the oxidative status of primary human hepatocytes (up to 100 µM concentration). Based on these observations, furin inhibitor MI-1851 appears to be potential drug candidates in the treatment of COVID-19, due to the involvement of furin in S protein priming and thus activation of the pandemic SARS-CoV-2.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Furina , Humanos , Albuminas/farmacologia , Tratamento Farmacológico da COVID-19 , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/toxicidade , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Furina/antagonistas & inibidores , Furina/metabolismo , Furina/farmacologia , Microssomos Hepáticos , SARS-CoV-2/efeitos dos fármacos , Albumina Sérica Humana/metabolismo , Glicoproteína da Espícula de Coronavírus
18.
Biomed Pharmacother ; 151: 113136, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35594715

RESUMO

Resveratrol (RES) is a widely-known natural polyphenol which is also contained by several dietary supplements. Large doses of RES can result in high micromolar levels of its sulfate and glucuronide conjugates in the circulation, due to the high presystemic metabolism of the parent polyphenol. Pharmacokinetic interactions of RES have been extensively studied, while only limited data are available regarding its metabolites. Therefore, in the current study, we examined the interactions of resveratrol-3-sulfate (R3S), resveratrol-3-glucuronide, and dihydroresveratrol (DHR; a metabolite produced by the colon microbiota) with human serum albumin (HSA), cytochrome P450 (CYP) enzymes, and organic anion transporting polypeptides (OATP) employing in vitro models. Our results demonstrated that R3S and R3G may play a major role in the RES-induced pharmacokinetic interactions: (1) R3S can strongly displace the site I marker warfarin from HSA; (2) R3G showed similarly strong inhibitory action on CYP3A4 to RES; (3) R3S proved to be similarly strong (OATP1B1/3) or even stronger (OATP1A2 and OATP2B1) inhibitor of OATPs tested than RES, while R3G and RES showed comparable inhibitory actions on OATP2B1.


Assuntos
Sistema Enzimático do Citocromo P-450 , Transportadores de Ânions Orgânicos , Resveratrol , Albumina Sérica , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronídeos/farmacologia , Humanos , Transportadores de Ânions Orgânicos/efeitos dos fármacos , Transportadores de Ânions Orgânicos/metabolismo , Polifenóis , Resveratrol/farmacologia , Albumina Sérica/efeitos dos fármacos , Albumina Sérica/metabolismo , Albumina Sérica Humana/metabolismo , Estilbenos/farmacologia
19.
Metabolites ; 13(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36676970

RESUMO

Alternariol (AOH) is an emerging mycotoxin produced by Alternaria strains. The acute toxicity of the mycotoxin is low; however, chronic exposure to AOH may result in the development of endocrine disruptor and/or carcinogenic effects. The toxicokinetic properties of AOH have barely been characterized. Therefore, in this study, we aimed to investigate its interactions with CYP (1A2, 2C9, 2C19, 2D6, and 3A4) enzymes and OATP (1A2, 1B1, 1B3, and 2B1) transporters employing in vitro enzyme assays and OATP overexpressing cells, respectively. Our results demonstrated that AOH is a strong inhibitor of CYP1A2 (IC50 = 0.15 µM) and CYP2C9 (IC50 = 7.4 µM). Based on the AOH depletion assays in the presence of CYP enzymes, CYP1A2 is mainly involved, while CYP2C19 is moderately involved in the CYP-catalyzed biotransformation of the mycotoxin. AOH proved to be a strong inhibitor of each OATP transporter examined (IC50 = 1.9 to 5.4 µM). In addition, both direct and indirect assays suggest the involvement of OATP1B1 in the cellular uptake of the mycotoxin. These findings promote the deeper understanding of certain toxicokinetic interactions of AOH.

20.
Biomed Pharmacother ; 146: 112513, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34915414

RESUMO

The interactions of four sulfonylated Phe(3-Am)-derived inhibitors (MI-432, MI-463, MI-482 and MI-1900) of type II transmembrane serine proteases (TTSP) such as transmembrane protease serine 2 (TMPRSS2) were examined with serum albumin and cytochrome P450 (CYP) isoenzymes. Complex formation with albumin was investigated using fluorescence spectroscopy. Furthermore, microsomal hepatic CYP1A2, 2C9, 2C19 and 3A4 activities in presence of these inhibitors were determined using fluorometric assays. The inhibitory effects of these compounds on human recombinant CYP3A4 enzyme were also examined. In addition, microsomal stability assays (60-min long) were performed using an UPLC-MS/MS method to determine depletion percentage values of each compound. The inhibitors showed no or only weak interactions with albumin, and did not inhibit CYP1A2, 2C9 and 2C19. However, the compounds tested proved to be potent inhibitors of CYP3A4 in both assays performed. Within one hour, 20%, 12%, 14% and 25% of inhibitors MI-432, MI-463, MI-482 and MI-1900, respectively, were degraded. As essential host cell factor for the replication of the pandemic SARS-CoV-2, the TTSP TMPRSS2 emerged as an important target in drug design. Our study provides further preclinical data on the characterization of this type of inhibitors for numerous trypsin-like serine proteases.


Assuntos
Antivirais/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores de Proteases/metabolismo , Serina Endopeptidases/metabolismo , Albumina Sérica Humana/metabolismo , Antivirais/análise , Antivirais/farmacologia , Relação Dose-Resposta a Droga , Humanos , Isoenzimas/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Inibidores de Proteases/análise , Inibidores de Proteases/farmacologia , Ligação Proteica/fisiologia , Serina Endopeptidases/análise , Espectrometria de Fluorescência/métodos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...